Welcome to the Electric Green Planet .com!


Welcome and thank you for visiting the Electric Green Planet .com!

Our goal is to show the world the benefits of replacing fossil fuel energy with a clean pollution free electric power. Electricity is widely viewed as a non-polluting clean energy source that does not produce carbon emissions. As the facts about the destructive nature of coal, oil, carbon and green house gases become known, we must start to make real changes to ensure our planets future.

Do not be fooled, we are talking about clean electrical power. Electrical power derived from energy sources such as coal cannot be considered green and do not count!

Scientists are working hard to find that next renewable energy source that will allow us to reduce our dependency on fossil fuels. Here are some great ways to generate clean non-polluting electrical energy.

  • Solar Power - is by far the Earth's most available energy source, easily capable of providing many times the total current energy demand. The largest solar power plants, like the 354 MW SEGS, are concentrating solar thermal plants, but recently multi-megawatt photovoltaic plants have been built. Completed in 2008, the 46 MW Moura photovoltaic power station in Portugal and the 40 MW Waldpolenz Solar Park in Germany are characteristic of the trend toward larger photovoltaic power stations. Much larger ones are proposed, such as the 550 MW Topaz Solar Farm, and the 600 MW Rancho Cielo Solar Farm. Covering 4% of the world's desert area with photovoltaics could supply all of the world's electricity. The Gobi Desert alone could supply almost all of the world's total energy demand. Solar power is a predictably intermittent energy source, meaning that whilst solar power is not available at all times, we can predict with a very good degree of accuracy when it will be available. Some technologies, such as solar thermal concentrators with an element of thermal storage, have the potential to eliminate the intermittency of solar power, by storing spare solar power in the form of heat; and using this heat overnight or during periods that solar power is not available to produce electricity. This technology has the potential to make solar power "dispatchable", as the heat source can be used to generate electricity at will. Solar power installations are normally supplemented by storage or another energy source, for example with wind power and hydropower.

    More information on Solar Energy can be found here >>>

  • Wind Power - is the conversion of wind energy into a useful form, such as electricity, using wind turbines. At the end of 2008, worldwide nameplate capacity of wind-powered generators was 121.2 gigawatts (GW). Wind power produces about 1.5% of worldwide electricity use, and is growing rapidly, having doubled in the three years between 2005 and 2008. Several countries have achieved relatively high levels of wind power penetration, such as 19% of stationary electricity production in Denmark, 11% in Spain and Portugal, and 7% in Germany and the Republic of Ireland in 2008. As of May 2009, eighty countries around the world are using wind power on a commercial basis.

    Large-scale wind farms are typically connected to the local electric power transmission network; smaller turbines are used to provide electricity to isolated locations. Utility companies increasingly buy back surplus electricity produced by small domestic turbines. Wind energy as a power source is attractive as an alternative to fossil fuels, because it is plentiful, renewable, widely distributed, clean, and produces no greenhouse gas emissions; however, the construction of wind farms (as with other forms of power generation) is not universally welcomed due to their visual impact and other effects on the environment.

    Wind power is non-dispatchable, meaning that for economic operation all of the available output must be taken when it is available, and other resources, such as hydropower, and standard load management techniques must be used to match supply with demand. The intermittency of wind seldom creates problems when using wind power to supply a low proportion of total demand. Where wind is to be used for a moderate fraction of demand, additional costs for compensation of intermittency are considered to be modest.

    More information on Wind Power can be found here >>>

  • Geothermal Power - (from the Greek roots geo, meaning earth, and thermos, meaning heat) is power extracted from heat stored in the earth. This geothermal energy originates from the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. It has been used for space heating and bathing since ancient roman times, but is now better known for generating electricity. About 10 GW of geothermal electric capacity is installed around the world as of 2007, generating 0.3% of global electricity demand. An additional 28 GW of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications.

    Geothermal power is cost effective, reliable, and environmentally friendly, but has previously been geographically limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for direct applications such as home heating. Geothermal wells tend to release greenhouse gases trapped deep within the earth, but these emissions are much lower than those of conventional fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed instead of fossil fuels.

  • More information on Geothermal Power can be found here >>>

  • Hydro Power - is power that is derived from the force or energy of moving water. In recent years many new and innovated power models have been developed to create energy from the worlds oceans, lakes and rivers.

    • Tidal power: Harnessing the tides in a bay or estuary has been achieved in France (since 1966), Canada and Russia, and could be achieved in other areas with a large tidal range. The trapped water turns turbines as it is released through the tidal barrage in either direction. A possible fault is that the system would generate electricity most efficiently in bursts every six hours (once every tide). This limits the applications of tidal energy; tidal power is highly predictable but not able to follow changing electrical demand.
    • Tidal stream power: A relatively new technology, tidal stream generators draw energy from currents in much the same way that wind generators do. The higher density of water means that a single generator can provide significant power. This technology is at the early stages of development and will require more research before it becomes a significant contributor. Several prototypes have shown promise.
    • Wave power: Harnessing power from ocean surface wave motion might yield much more energy than tides. The feasibility of this has been investigated, particularly in Scotland in the UK. Generators either coupled to floating devices or turned by air displaced by waves in a hollow concrete structure would produce electricity. Numerous technical problems have frustrated progress.

    A prototype shore based wave power generator is being constructed at Port Kembla in Australia and is expected to generate up to 500 MWh annually. The Wave Energy Converter has been constructed (as of July 2005) and initial results have exceeded expectations of energy production during times of low wave energy. Wave energy is captured by an air driven generator and converted to electricity. For countries with large coastlines and rough sea conditions, the energy of waves offers the possibility of generating electricity in utility volumes.

    More information on Wind Power can be found here >>>

  • Nuclear Power - is any nuclear technology designed to extract usable energy from atomic nuclei via controlled nuclear reactions. The only method in use today is through nuclear fission, though other methods might one day include nuclear fusion and radioactive decay (see below). All utility-scale reactors heat water to produce steam, which is then converted into mechanical work for the purpose of generating electricity or propulsion. In 2007, 14% of the world's electricity came from nuclear power. Also, more than 150 nuclear-powered naval vessels have been built, and a few radioisotope rockets have been produced. Nuclear power is a low carbon power source.

    Nuclear Power is a controversial green energy and is listed here because some of the brightest minds in the world feel that Nuclear energy is green because of the low carbon emissions. We feel that though it does fit the criteria as "green" it should be listed, even if we do not endorse its use.